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Motivation

Motivation

Probabilistic Character of Physical Processes

is not an intrinsic property, but a consequence of loss of information about
these processes.

equilibrium processes: uncertainty about parameters from mean-field
theory

non-equilibrium processes: uncertainty about mean-field theory itself

Models of Physical Processes

are not intrinsic properties of these processes, but a consequence of our
choice of Observables and Quantities of Interest (QoI).

We have a choice in which information to package and how to do that

with consequences on the way we think things depend on each others, and
hence on the whole machinery of statistical inference.
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Motivation

Some UQ Challenges

Purpose: U = Û|h,d ,p,m + εh|d ,p,m + εp|d ,m + εd |m︸ ︷︷ ︸
Limits on Predictability: Must be quantified

+εm

Quantify and manage risk

Scientific discovery

Modeling

What is the relationship between evidence and quantities of interest ?
conservation laws ? differential equations ? how much freedom do have ?

Curse of Dimensionality

How much of the complexity structure do we need to sufficiently
characterize the QoI ?
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Constrained Random Matrices

Random Matrix

If a system is sufficiently complex, the state of the system is no longer
important ... what is required here is a new kind of statistical mechanics,
in which we renounce exact knowledge not of the state of the system but
of the system itself. We picture complex nucleus as a black box in which a
large number of particles are interacting according to unknown laws. The
problem then is to define in a mathematically precise way an ensemble of
systems in which all possible laws of interaction are equally possible” (E.
Wigner, 1932; F. Dyson, 1961).
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Constrained Random Matrices

Construction of Stochastic Matrices

Most General:

Joint density function on matrix elements: too complex, requires too much
information.

Known Physical Constraints:

Invariance of measure under arbitrary rotations

Hermitian Hamiltonians

Accounting for additional invariances:

GUE (Gaussian Unitary ensemble)
GOE (Gaussian orthogonal ensemble)
GSE (Gaussian symplectic ensemble)

Applications in Mechanics:

The set of positive definite matrices constrained by experimental
observations is significant.
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Constrained Random Matrices

Positive Definite Matrices

MaxEnt with following constraints:
∫
M+

n
ApAdA = Ā ∈M+

n∫
M+

n
pAdA = 1

E{‖A−1‖γF} <∞

Then A has the Wishart distribution, characterized by its mean and
dispersion coefficient

δA =

√
E‖A− Ā‖2

F

‖Ā‖2
F

‖A‖F =
√

tr(AAT )
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Constrained Random Matrices

Bounded Matrix

Behavior of heterogeneous materials can be theoretically bound between
the behavior of two equivalent homogeneous materials:

Specifically, the constitutive matrix is bounded above and below by:

Cl ≤ C ≤ Cu

Constrain the probabilistic model of the heterogeneous material with this
information: G = {G ∈M+

n : Gl < G < Gu}

∫
G pG(G )dG = 1∫
G ln [det(G − Gl)] pG(G )dG = gl∫
G ln [det(G − Gu)] pG(G )dG = gu
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Constrained Random Matrices

MaxEnt Distribution of Bounded Random Matrix:

pG (G ) =
det(G − Gl)

a−(N+1)/2 det(Gu − G )b+(N+1)/2

βN(a, b) det(Gu − Gl)(a+b)−(N+1)/2

Notes:

a, b are obtained from the MaxEnt optimization.

efficient sampling algorithms have been developed for this distribution.
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Constrained Random Matrices

Experimental Data - with inclusions
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Constrained Random Matrices

Detection of Subscale Features
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Constrained Random Matrices

Comments

Stochastic homogenization without the asymptotics:

Information from specific subscale (one at which instabilities initiate)
is packaged into parameters for a model at a specific coarse scale
(one where QoI is relevant).

Subscale can be identified with scale at which damage must be
detected.

Coarse scale can be identified with scale at which system
measurements (prognostic measurements) are made.

Random matrices for inelastic material behavior are also completed.
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Constrained Random Matrices

Random Conservation Law or Stochastic Matrix

MaxEnt with Following Constraints:

1 q1(ω) + · · · qn(ω) = 1 a.s.

2 E q = (q̂)ML

3 E(qj − q̄j) = s2
qjML
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Constrained Random Matrices

Random Conservation Law or Stochastic Matrix

Optimization Problem

f ∗q = arg max
fq

−
∫
V
fq(q1, · · · , qn) ln fq(q1, · · · , qn)dV

s.t.

∫
V
fq(q1, · · · , qn)dV = 1∫

V
qi fq(q1, · · · , qn)dV = q̄i i = 1, · · · , n∫

V
(qi − q̄i )

2fq(q1, · · · , qn)dV = σ2
qi

i = 1, · · · , n

where the domain V is characterized by

V =

{
[q1, · · · , qn] ⊂ Rn |

n∑
i=1

qi = 1 ; qi ≥ 0, i = 1, · · · , n

}
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Constrained Random Matrices

Random Conservation Law or Stochastic Matrix

Solution

With only mean constraint:

f ∗q (q) = e(µ−1) exp ((λ, q))1V (q)

With mean and variance constraints:

f ∗q (q) = e(µ−1) exp

(
(λ, q) +

n−1∑
i=1

ηiq
2
i

)
1V (q)
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Constrained Random Matrices

Example from Epidemiology
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Uncertainty associated with optimal decisions are computed. Important for
risk assessment.
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Constrained Polynomial Chaos

A Cameron-Martin Theorem

Let x(t) be a Brownian motion, and let:

{αi (t)} is a CONS in L2[0, 1]

Φm,p(x) = Hm

[∫ 1
0 αp(t)dx(t)

]
m = 1, 2, · · · p = 0, 1, · · ·

Ψm1···mp(x) = Φm1,1(x) · · ·Φmp ,p(x)

Then

lim
N→∞

∫ w

C

∣∣∣∣∣F [x ]−
N∑

m1,··· ,mN

Am1,··· ,mN
Ψm1···mN

(x)

∣∣∣∣∣
2

dwx = 0

The polynomial chaos decomposition of any square-integrable functional of
the Brownian motion converges in mean-square as N goes to infinity.

For a finite-dimensional representation, the coefficients are functions of the
missing dimensions. That is, the coefficients are themselves random
variables dependent on the dimensions excluded from the representation.
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Constrained Polynomial Chaos

Polynomial Chaos

α(x , θ) =
∞∑
i=0

αi (x) Ψi (ξ(θ))

UQ IMA 20 / 35



Constrained Polynomial Chaos

Polynomial Chaos

α(x , θ) =
∞∑
i=0

αi (x) Ψi (ξ(θ))

Note

Must estimate αi constrained by information:

experimental constraints (known only through distributions):
-ξ captures endogenous sources of uncertainty.
physics constraints (deterministic maps):
-α depends on ξ through a conservation law that must be honored.

Dimension of ξ reflects complexity of the process α.

Probability measure of ξ determines the geometry in which analysis
and approximation are carried out.
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Constrained Polynomial Chaos

Uncertainty on Uncertainty

�� ��α(x , θ) =
∞∑
i=0

αi (x)Ψi (ξ(θ))

Coefficients are uncertain�� ��αi =
∑

j αijΨj(ηi )

'

&

$

%
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Constrained Polynomial Chaos

α(x , θ) = f (x , ξ1, · · · , ξn︸ ︷︷ ︸
Aleatoric Uncertainty

, ξn+1, · · · , ξm︸ ︷︷ ︸
Model/Data Uncertainty

)

=
∑
i

αi (x)Ψi (ξ)
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Constrained Polynomial Chaos

Characterization of Chaos Expansions of Model Output

Given a model:

Mξu = 0

We want:

u(ξ) =
∑
i

(u, ψi )L2(Ω)ψi (ξ)

If ξ are independent and have density functions:

ui =

∫
Γ1

· · ·
∫

Γd

u(ξ)ψi (ξ)f1(ξ1) · · · fd(ξd)dξ1 · · · dξd
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Constrained Polynomial Chaos

Challenge

Curse of Dimensionality

Dimensionality of problem is controlled by the dimension of input
parameters ξ.

We typically seek L2 convergence in space-time-stochastic measures:
solution is spatio-temporal stochastic process.

BUT:

Often the quantities of interest are scalar random variables.

THEN:

We discover one-dimensional representations adapted to the QoI.
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Constrained Polynomial Chaos

Example 1: Algebraic Model with Random Coefficients

Linear springs in series

h(ξ1, · · · , ξd) =
d

1 + b

d∏
i=1

(1 + aiξi + biξ
2
i )

d∑
j=1

d∏
i=1
i 6=j

(1 + aiξi + biξ
2
i )

E{ξiξj} = e |i−j |/l
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Constrained Polynomial Chaos
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Constrained Polynomial Chaos

Example 2: PDE with Random Coefficients

Plane Stress Problem

Stochastic Characterization

C (x1, x2) = 0.25e−
x1−x2

lc

µ = 0.25
Ē = 1MPa
lc = 0.25
100 terms retained in KL expansion.
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Constrained Polynomial Chaos

Plane Stress

1D Approximation using Best KL component of solution

PDF of displacement at one point of
the domain.
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Constrained Polynomial Chaos

Plane Stress

PDF of Displacement for Isometry A using linear and quadratic content
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Constrained Polynomial Chaos

Plane Stress

PDF for maximum von Mises Stress over the domain
for Isometry A using linear and quadratic content
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Constrained Polynomial Chaos

Observation:

If material properties in original problem are introduced in a particular
reduced form ({kAα}) then solution of original problem will be identical to
the adapted solution:
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Constrained Polynomial Chaos

Adapted Material Coordinates with Gaussian Adaptation
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Concluding Remarks

Concluding Remarks

Integration

UQ is paramount for the rational fusion of disparate streams of
information.

Validation

UQ is paramount for assessing the credibility of model-based decisions.

Model Building

UQ can use statistical dependence to drive scientific discovery and
enhance predictive models.
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